St Lo Co ome to .). M E Т o ᢏ[G -Tr -P -G -L → -M +], NK-2 T に At jo st K. Brzozoks, A. joks, S. Rolz k zz-Motok Lo, A. L 🚾 🕹 K. Ro

Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, PL-80-952 Gdańsk, Poland

(Received December 7th, 2001; revised manuscript February 19th, 2002)

i K di -2 l6 i i і — ф. - - l6 - - ф. - -і Б. & d. l6 С d i di ii di ib 16 d. 16 16 di ib d 16 l6 id did did δ δ i δ l6, i l6 D C l6 d il6 l6 C /3 ibl d 16 16 iБ . i 16i id.l6 i 3%

K (or S: -2 i, B, bi

1988 ill *et al.* 1,2 l6 i d i l6 id i i Ci 16 i ii 16 - - - i 16 16 16i did S_pd 1616 1993/1994 l6 is_l ККis 1^{1} is 1^{1} D ib i, 16i16 bi d (🖉 i 16 **6** 6 16 i i 4) d b i **l6** il6 id 16 bibib.Ad etal. 5i ddii 16 16 lő lő d d i i d i i 16di , i d d b i i i i.k6 i i

Б і dl6 і b b d і i b il6. і-i l6i ib і b di l6 bi id. l6 b i dibb dibbl6 d. Б i 16i

R А

 $\mathbf{F} = \mathbf{F} + \mathbf{F} +$ d l6 AC - -C $\overrightarrow{\mathbf{V}}$, $\overrightarrow{\mathbf{$

$$\overline{V_i} = V_0 \sum_{j=1}^{NC} x_j v_{ji} \quad i = 1, 2, \dots, NP; \qquad \overline{J_i} = \sum_{j=1}^{NC} x_j J_{ji} \quad i = 1, 2, \dots, NQ; \quad with \quad \sum_{i=1}^{NC} x_i = 1$$

 16
 i
 Si
 16
 Si
 16
 i
 d
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i</

T 1. 16	5 16 i i	<u>б 166</u> і D	() d h d ₆ 295	6	ç .	ί ί Δδ/Δ (/)	b -2
12 24				C16 i	6 161			Δδ/Δ
in in		α-C	β-C	γ - C	δ-C	16		/
-66	7.77	3.91	1.78	1.95		ε- ₂ () 6.82;()	7.16	0.96
7	7.95	4.20	3.02			(1) 10.81; 2 7.02	2;7 7.30	2.62
168	8.13	4.21	3.02; 2.99		2,6 7.02	3,5 7.12;4 7.46		3.10
9	8.24	3.59						3.10
10	8.33	4.11	1.52	1.49	0.88; 0.79			3.65
11	8.11	4.11	2.00; 1.98	2.45; 2.3	39			3.30

Fir 1. lói bi ii **b** -2 i.

i 16 ii 16 16 -2 i did, 6b -

810

Т	۶ 2.	i i	Б	il6,	i i		i t	5	d			Б	,l6 d			d	d i
	Б				i	d	i St	в	d	66	d	Б	i i	6	6		•

i i K									
β*- γ- diib	d l6 d i	i 16 i %	i - it it	Б.					
⁷ - 16 ⁸	$^{6} \rightarrow C^{-9}$	32.0	6	6.3	6.7				
7γ	$^{8} \rightarrow C$ 6		7	9.3	8.8				
			8	5.4	5.1				
¹¹ 6 ⁶	$^{10} \rightarrow C ^{8}$	31.0	9	9.0	9.5				
- d ⁶ - ⁷ '	$^{8} \rightarrow C$ ¹¹		10	6.8	6.7				
			11	5.5	5.6				
- 6 ⁶ - ⁷		12.9							
- 6 ⁶ - ⁷		9.9							
⁷ - 16 ⁸ ′									
⁷ - 16 ⁸	$^{6} \rightarrow C$ 10	6.1							
	$^9 \rightarrow C^{-7}$								
- 6 ⁶ - ¹¹	$^{10} \rightarrow C^{-8}$	3.5							
- 6 ⁶ - 7 '	$^{8} \rightarrow C^{-6}$								
- 7 γ									

В

 File
 i
 l6
 ii
 i
 il6
 i ib
 i l6
 l6
 3%

 b
 -2
 i
 (A), d
 l6
 b
 d
 i
 (B).

 16
 i
 16
 -2
 i
 5
 id
 id
 5

 i16
 i16
 i6
 i6
 i6
 i6
 i6
 i
 d

 d
 i6
 i6
 i6
 i6
 i6
 i6
 i

 d
 i
 i6
 i6
 i6
 i6
 i6
 i6

 d
 id6
 i6
 i6
 i6
 i6
 i6
 i6

 d
 id6
 i6
 i6
 i6
 i6
 i6
 i
 i

 d
 i6
 i6
 i6
 i6
 i6
 i
 i
 i

 b
 i6
 i6
 i6
 i6
 i6
 i
 i
 i

 i6
 i6
 i6
 i6
 i6
 i6
 i6
 i
 i

 i6
 i6
 i6
 i6
 i6
 i6
 i6
 i
 i

 i6
 i6
 i6
 i6
 i6
 i6
 i6
 i
 i

 i6
 i6
 i6
 i6

A bd

 l6i
 d
 l6
 i
 i
 S

 i
 id
 i6
 Ad
 iC
 C
 (AS)
)
 i
 i
 b
 b

 i
 id
 i6
 Ad
 iC
 C
 (AS)
)
 i
 i
 i
 b
 b

 C
 l6
 S
 b
 d
 b
 C
 i
 i
 i
 b
 b
 b

 d
 i
 b
 b
 i
 i
 i
 i
 i
 b
 b

 i
 i
 b
 b
 i
 i
 i
 i
 i
 b

1. ibb B. ., C i . **R**, il6 A., i ., A. d it &, Regul. Peptides, 22, 189 (1988).

В. ., 2. il6 A. ., R d i ., iBi A., it **&**, *Regul. Peptides*, **22**, 127 (1988).

3. **16** ., B G d i i D., Int. J. Pept. Protein Res., 41, 376 R. ., i ., b S**(**1993).

S., J. Pharm. Biomed. Anal., 12, 65 (1994). 4. ' i l6 .. d

., R i G d i .A., Int. J. Pept. Protein Res., 44, 556 (1994). 5.A d

йС., 6. **b** ., To 16 .,С В **R**, **i** A., **i i** . d **i** ., *LIPS*, 5, 445 (1998).

7. 🚡 l6 ., l6 ., C **b i** C., **i** A., **i i** . d **i** ., J. Biomol. NMR, **15**, 315 (1999).

8.16 :// . . 9. & d i i l£6 dSq / /C Bi b **Б**/ **Б**.

А., A., C b i C., i A. d B b ., J. Pept. id'., Res., 58, 159 (2001).

10. $\mathbf{\hat{n}} \quad \mathbf{i} \quad ., \mathbf{\hat{s}}_{i}$ Magn. Res., **134**, 189 (1998). 11. $\mathbf{\hat{s}} \quad \mathbf{\hat{b}}$ D. $\mathbf{\hat{s}} \quad \mathbf{d} \quad \mathbf{16} \quad ., Biopolymers,$ **27**, 1283 (1988).12. $\mathbf{16} \quad \mathbf{\hat{c}} \quad \mathbf{\hat{c}}_{i} \quad .D., \mathbf{\hat{b}} \quad .A., \mathbf{C} \quad ., \mathbf{\hat{b}} \quad \mathbf{\hat{i}} \quad \mathbf{\hat{c}}_{i}$ i A., 🖁

 12.
 A., J. Phys. Chem., 96, 6472 (1992)

 13.
 ib
 , ib
 ib

 14.
 B ib
 A., J. Proteins Struct., Funct. Genet., 10, 199 (1991).

 14.
 B B .
 .

 15.
 B .
 .
 .

 14.
 B B .
 .

 15.
 B .
 .
 .

 14.
 B .
 .
 .

 15.
 B .
 .
 .

 15.
 B .
 .
 .

 15.
 B .
 .
 .

 16.
 .
 .
 .

16 . ., Comput. Chem., 10, 209 (1980). 16.

17.

 \mathbf{i} ..., \mathbf{d} B b ..., J. Magn. Reson., **65**, 526 (1985) \mathbf{d} **B** ..., C.B., B.A. \mathbf{d} **c** \mathbf{i} D. **c B** A 2.1, \mathbf{d} (1004) 18. i i, . -, (1994).

19.

20. B

21.

S SJ d Bi-C 22. б. ал it 1994, .487. Sp ··· D'A i тр i il6, d_.),

₩., di A., D'A i 🐨 ., **b**., i., ., d C. d 23. Biopolymers, 40, 505 (1996).